

Sponsored by the U.S. Department of Energy, ARPA-E Contract No. DE-AR0000263

Advanced Sodium Battery with Enhanced Safety and Low Cost Processing

Joonho Koh (jkoh@msrihome.com), Materials & Systems Research, Inc., 5395 W 700 S, Salt Lake City, UT

Conventional Solid-Electrolyte Na Battery

- ✓ Electrolyte: Beta-alumina, Nasicon
- ✓ Electrolyte-support cells
- ✓ Operating at 300~350°C
- ✓ Proven battery chemistry
- ✓ Demonstrated cycle life (>5000)
- ✓ Commercialized successfully

Example:

NGK's 1MW NaS battery system for load-leveling operation at Meisei Univ. (Japan) in 2003-2006

Project Description and Status

Project Objectives

- ☐ Advance the proven Na battery (solid-electrolyte) chemistry to more reliable and cost-effective battery technology
- □ Design for improved safety
- ☐ Apply low-cost cell fabrication processes

Progress to Date

- **❖** Designed a porous-metal-supported thin film battery cell structure
- Applied thermal spray process to deposit 100-300 μm beta-alumina solid electrolyte
- Demonstrated much higher mechanical strength and lower areaspecific resistance (ASR) than the conventional cell structure

Future Plans

- > Working on spray process optimization and post-spray densification
- > Plan to fabricate and test tubular cells of 30-100 Wh
- > Plan to demonstrate kW battery module and system prototype

Advanced Solid-Electrolyte Na Battery

- ☐ Same active materials
- ☐ Same battery chemistry
- ☐ Electrode-support cells
- ☐ High-strength porous metal support (COTS)
- ☐ Thin film solid electrolyte
- □ Operating at <300°C
- ☐ Quick and low cost thermal spraying process
- ☐ Improved safety and lower fabrication cost

US Pat. Appl. 13/898,441 14/461,358

Advanced Na Battery Cell Fabrication

